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The Laplace Transform

Definition

F(s)=L{f(t)} = lim ’ e St f(t) dt

e—0 €
T—00

Theorems

. L linear

L{a1fi(t) + azf2(t)} = a1 Fi(s) + aa Fa(s)

L1 linear
Lo Fi(s) + aaFa(s)} = ar fi(t) + a2 fa(t)
Differentiation
c{ G} = - 0
dt
. Integration

c {/Otf(T)dT} - EF(S)

lim f(t) = lim sF(s)

t—0 5—00

Initial value

Steady state value
lim f(t) = lir% sF(s)

t—o0

Time scaling

Frequency scaling

a
Time delay

L{f(t—T)} = e*TF(s)
Damping

LTHF(s+a)} =e " f(t)
Product

c+joo
LAEOLOY =5 [ R0k -o)ds

B 27Tj —joo
Convolution

c {/Ot AT falt = 7) dT} — Fi(s)Fy(s)



1.3 Transform table

F(s) | L7H{F(s)} | L7 {iF(s)}
1 a(t) o(t)=1

1 o(t) =1 t

L tn [

sm (n—1)! n!

1 =1 efat 1 {1 . (1 Lat+ T anfltn71> efat}
(s+a)m (n—1)! am™ T (n—1)!
lera e—at % (1 . e—m‘)

1 e—bt_g—at 1 (1 _ be~ %t _ge b’f)
(s+a)(s+b) a—b ab b—a
stz (z—a)e ' —(z—b)e”** 2z (1 _ b(z—a)e”*" —a(z—b)e m)
(s+a)(s+b) b—a ab z(b—a)
o b= oz (1= (T +at)e™ )
(:j(f)z (14 (2 —a)t)e® Z(1-(1—%a—2z)t)e ")
P < sin(at) — (1 — cos(at))
P cos(at) < sin(at)
Sio VePia? 4 sin(at + ) Z - ‘/z +2 cos(at + )
¢ = arctan(a/z), z>0 ¢ =arctan(a/z), z>0
¢ =arctan(a/z)+m, 2<0 ¢ =arctan(a/z) +m, 2<0
m ze “sin(bt) e {1 — Ce “sin(bt + )}
— Va2+4b?
=5
¢ =arcsin(1/C), a>0
p=m —arcsin(1/C), a<0
ﬁ %\/(2 —a)? + b2e " sin(bt + @) e {1 - Ce " sin(bt + ¢)}

ap—arctan( b ) z—a>0

2
)+7r z—a<0

¢ = arctan (

_ VG e
I b

2 2
a~Z‘rb 20

¢ =arcsin(1/C), a—

¢ =m —arcsin(1/C), a-— ‘ﬁ—:rbz <0

s+z

1
{ 52 +2Cwos+w0§
s2+2Cwos+w8

Compute @ = Cwo
P b:wox/l—CQ

and substitute in the formulas above.




Notes on the derivative formula at ¢t =0

The formula £(f’) = sF'(s) — f(0-) must be interpreted very carefully when f has a discon-
tinuity at t = 0. We'll give two examples of the correct interpretation.

First, suppose that f is the constant 1, and has no discontinuity at ¢ = 0. In other words,
f is the constant function with value 1. Then we have f’ =0, and f(0_) = 1 (since there is
no jump in f at t = 0). Now let’s apply the derivative formula above. We have F(s) = 1/s,
so the formula reads

L(f)=0=sF(s)—1

which is correct.

Now, let’s suppose that g is a unit step function, i.e., g(t) = 1 for ¢ > 0, and ¢(0) = 0.
In contrast to f above, g has a jump at ¢ = 0. In this case, ¢’ = 4, and ¢g(0_) = 0. Now let’s
apply the derivative formula above. We have G(s) = 1/s (exactly the same as F!), so the
formula reads

L(g)=1=5G(s)—0

which again is correct.

In these two examples the functions f and g are the same except at t = 0, so they have
the same Laplace transform. In the first case, f has no jump at ¢ = 0, while in the second
case g does. As a result, f’ has no impulsive term at ¢t = 0, whereas g does. As long as you
keep track of whether your function has, or doesn’t have, a jump at ¢ = 0, and apply the
formula consistently, everything will work out.



	Laplace Boyd.pdf
	stanford.edu
	http://www.stanford.edu/class/ee102k/laplace-table.pdf


	Laplace Boyd.pdf
	stanford.edu
	http://www.stanford.edu/class/ee102k/laplace-table.pdf





